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Abstract

The experimental evidence for self-trapping of amide-I (CO stretch-

ing) vibrational energy in crystalline acetanilide (a model protein) is

reviewed and related to A. S. Davydov’s theory of solitons as a ❑echanism

for energy storage and transport in protein. Particular attention is

paid to the construction of quantum states that contain N amide-T

vibrational quanta. It is noted that the “N = 2“ state is almost

exactly resonant with the free energy that is released upon hydrolysis

of adenoaine triphosphate.



INTRODUCTION

In living organisms a fundamental ❑echanism for the transfer of

●nergy into function proteins or enzymet is the hydrolysis of adenosine

triphosphate (ATP) into adenosine diphosphate (A.DP) according to the

reaction

ATP
-4

+ H-O + ADP-3
-2+ HPO, + H+ .
4

(1.1)

Under normal physiological conditions about 10 kcal/mole or .422 ev of

free energy is released by this reaction (Fox 1982), leading to several

interesting questions: How is this free energy transferred into protein?

How is it stored there? How does it move inside a protein? How is it

transformed into useful wcrk?

To answer questions of this sort a theory was proposed by Davydov

and Kislukha (1973) which focused attention on the self-trapping of

molecular vibrational energy in the amide-i (or CO stretch) vibration

of the peptide unit (CONH), a basic structural element of all proteins.

Roughly speaking, it was proposed thnt the loca~izatiun of amide-I

vibrational energy would alter the surrounding structure (primarily

the hydrogen bonding) and that this local alteration would, in turn,

lower the amide-1 energy enough to prevent its dispersion.

At about the same time as the original pnper by Davydov and

Kislukha (1973), Careri (1973) published some unexpected rpectral

measurements in the amide-I region of crystalline acetanilj.de

(CH3CWHC6if~)X or ACN. MS the temperature was lowered from room
.

temperature, h~ ~bserved an anomolous amide-l band (ak. 1650 cm-*)

-1
growing up on the red side of the no~mal amide-I band (at 1665 cm ).

This 1650 cm
-1

band was ca!led anomalous becduse it could not be
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●xplained with accepted concepts of ❑olecular spectroscopy (e.g. Fermi

resonance, Davydov splitting, etc). At first Ca-eri suspected some

unusual one dimensional phase transformation might provide an explana-

tion, but no such evidence waa found after several years of experimental

work. Recently a self-trapping theory was proposed (Careri, ●t al..—

1983) which iE closely related to that of Davydov and explains the

salient experimental facts (Careri et al. 1984, Eilbeck et al,, 1984).—. ——

The present situation, -1
therefore, is that the 1650 CID band in

ACN seems to provide direct experimental ●violence for a self-trapped

state of molecular vibrational energy. The “red shift” of 15 cm-l from

the normal band can be considered as the binding energy of a Da~ydov-

like soliton, and this interpretation leads to quantitative predictions

of biological significance,

This paper is organized into three broad phases. The fi;st is a

review of Davydov’a soliton theory and the experimental observations in

crystalline acetanilide, The second phase is a detailed comparlsor, of

various attempts to provide a quantum mechanical explanation for st=lf-

trapping of molecular vibrations. Finally some questions of biological

significance are briefly considered.

Before turning to the detaile let me interject G comment on the

nature of research in biophysics and in biology. Biophysics, in my

view, is different from biology. Biophysics attempts to make known the

❑echanisms that are possible in biological organisms and those that are

not. Given this “menu of po~sible mechanisms” it i~ the task of true

biological research to make known what actually happens in an organism.

This paper is primarily an exercise in biophysics.
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MVYDOV’S SOLITON THEORY

This section is i~tended to provide a brief summary of Davydov’s

soliton theory for the convenience Gf the reader. Such a summary is

helpful to appreciate the differences between the theory of self-

trapping proposed for proteins and the theory proposed recently to

explain experimental measurements on crystalline acetanilide. It is

also necessary in order to see how the quantum theory developed by

Davydov as a basis for self-trapping is related to other quantum

analyses. Several detailed surveys of this work are available for

further reference (Davydov 197!la and 1982b), and a somewhat more 8eneral

analysis has recently been published by Takeno (1983).

Consider the alpha-helix structure of protein that is shown in

Fig. 1,

Figure 1 here (for legend see p. 26)

Careful inspection reveals three channels situated approximately in the

longitudinal direction with the sequence

etc. H-N-C=O---tN-C=O=H---C=O-H=N---H-N-C=O etc.

where the dashed lines represent hydrogen bonds. one of thece channels

is cross-hatched on Fig. 1. For a detailed analysis it is necessary to

consider the interaction of all three channels, but one is sufficient

to lay out the basic ideas.

A single channel is governed by the energy operator

fl=fi co + f) + RinL .
ph (2.1)

(Throughout this paper the circumflex will be used to indicate an
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operator.) Taking the components of h in order, f$o is an energy

operator for the CO stretch (amide-I) vibration including the effects

of neareat neighbor dipole-dipole interactions, Thus

R z [Eo6:6n-J(6:+16:6+~ n+~1Co=n (2.2)

where E. is the fundamental energy of the amide-I vibration, -J is the

tnearest neighbor dipole-dipole interaction energy, and 6n(6n) are boson

creation (annihilation) operators for amide-I quanta on the n~ mole-

cule.

fiph is the energy operator for longitudinal (~coustic) sound waves.

Thus

(2.3)

where M is the mass of a molecule, W is the spring constant of a hydrogen

bond, in is a longitudinal momentl’m operator for the nq molecule, and

on is the corresponding longitudinal positior. operator.

Interaction between amide-i vibrations and longitudinal sound

waves occurs through the interaction energy operatcr

(2.4)

where Xa is the derivative of amide-I vibrational energy with respect

to the length (R) of the adjaceut hydrogen bond. Thus

Xa E dEo/dR . (2,5)

Values for the parameters in these equations are listed in Table 1.



Table 1. Physical Parameters for Davydov’s Hamiltonian

Parameter Velue Unit.— References

E .21 eV (Nevskaya & Chirgadze 1976)o

J 7.8
-1

cm ditto

H 114
‘P

(Scott 1982)

w 13 N/m (Itoh& Shimanouchi 1972)

Xa 6,2x10-1] N (Careri et al, (1984)——

It is interesting to observe that this is a biological problem for

which all the physical parameters have been determined,

Davydov minimizes the average value of fi with respect to the wave

function

l+> = Z an(t) exp[6(t)]6~10>
n

where

6Z -* 2 [pn(t)jn-nn(t)Gn] ,

n

A straightforward calculation show.. that

$n(t) = <+q*>

(2.6)

(2.7)

(2.8)

and

Trn(t) = Wnw . (2.9)

The wavefunction in (2,6) will be called Davydov’s ansatz throughout. .—

this paper. One oi the aims Ilere ia to study the range of validity of

this an~atz,
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Assuming that Davydov’s ansatz approximates the true wavefunction,

(2.8) and (2.9) show that ~n and nn are the average values of the posi-

tion and momentum operators respectively, Furthermore an is the

probability amplitude for finding a quantum of amide-I vibrational

●nergy on the nth ❑olecule. The normalization condition <~1~> = 1—

implies that

I lan12 = 1 .
n

(2.10)

Thus Davydov’a ansatz describes the dynamics of a single quantum of

atnide-I vibrational energy.

Minimization of ~$1~1$> with respect to an, ~n and nn leads to the

differential difference equations

(iv $ - Eo)an + J(~n+l+an.l)-xa(Pn-Pn-l)a = on

M; - w(pn+,- mn+pn-ll = Xa[lan+112-lan121n
(2. lla,b)

Extensive numerical and theoretical analysis of (2.11) yields the

following resultu (S ltt 1982 & 1984, MacNeil and Scott 1984): i) It is

reasonable to expect soliton formation at the level of energy released

by ATP hydrolysis (1.1) , and ii) Such a soliton travels rather slowly

with respect to the speed of longitudinal sound waves. This suggests

neglecting the kinetic energy of longitudinal sound by assuming $n = O,

whereupon

(2,12)

and, in this “adiabatic approximation”, (2.11) becomes



(ill& - Eo)an + J(a n+l+an-l) + yalan12 an= O

where

(2.13)

(2.14)

Davydov has emphasized that a solitary wave solution of (2.11)

cannot be created directly by absorption of a photon because of an

unfavorable Franck-Condon factor. This is because the necessary inter-

molecular displacement in (2,11b) cannot occur in a time that is short

enough for photon absorption. The Franck-Condon factor will be dis-

cussed in detail in the following section.

SELF-TRAPPING IN CRYSTALLINEACETANILIDE

A unit cell of crystalline acetanilide (ACN) is shown in Fig. 2.

Figure 2 here (for legend see p. 26)

Just as in the alpha-helix, careful inspection of Fig. 2 reveals channels

situated in the b-direction with the ~equence

etc. H-N-C=O---N-C=O=H---C=O-H=N---H-N-C=O etc.

Recent infrared absorption measurements on microcrystals of ACN

are shown in Fig. 3.

Figure 3 here (for legend see p. 26)
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Attention here iB focusied on the band at 1650 cm
-1

which rises with

decreasing temperature to become the dominant spectral feature below

100K.

When this band was discovered, Careri (1973) su~pected it to be

ca!~sed by a subtle phase change along the b-direction of the crystal,

but careful studies over a period of several years (Careri et al, 1984)—.

failed to reveal any such evidence, The lack of a viable alternative

-1eventually led to the suggestion that the 1650 cm band might be caused

by direct absorption oi an infrared photon into a self-trapped state

similar to that proposed by Davydov. The qualifier “similar” is impor-

tant

able

because, as was noted above, the Franck-Condon factor is unfavor-

for direct photon tibsorption by a self-trapped solution of (2.11)

The corresponding theory proceeds, as in the previous spct.ion, by

defining ttie energy operator

fi= ~CO + ~rh + *int) (3.1)

where RCO is again given by (2.2) but with (Eilbeck et al, 1984)—.

J = 3.96 cm-l . (3.2)

In the present

by interaction

Thus

analysis, however, self-trapping is aesumcd to bc rauNI’d

with an optictil phonon rtither than an ucou~tic plionol),

(3.3)

and



II

(1P :, - KJa,l I Jhl,,,+al,m,) ~ y,,l#l,lJfi-0,
!1

Whrrr

ill}
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Wo turn naxt to an estimate of the Franck-Condon factor for direct

photon absorption by a self-trapped -tate of (3,6). Before ●bsorption

iIIn12 ● o, and ●fter absorption lan12 P 5 over a locsllzed region such

that (2,10) ia natinfied, Thus the ground ntate waveftinction of (3.6b)

mat mhift from

(3,11)

Ill - [w/mli (,1,1:1)
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factor given in (3.14) should be reduced by the additional factor

[l-exp(=l)l)/kT) ]2. A least square fit to intensity data of Fig. 3 is

-1
obtained fox Jhu = 131 cm . Together with (3.10) this implies

●xp(-yo/2)hu) = 0.84.

Furthe~ evidence tending to favor o self-trapping explanation for

the 1650 cm-1 band is the recent observation of the overtone series shown

in Table 2 (Scott ~ al. 1985),

Table 2. Overtone Serie= for the ACN Soliton——

Since the overtones N

more than on~ qLASnL:IIII

cor,nidrr n~lf-trapp~d

Till! QUANTUMTIIWWYOF

IQ!)
1650 cm-l (.205 eV)
3250 (,403)
;804 (.596)
6311 (,782)

~ 2 are in ~ome sen~e self-trapped states involving

of thu ●mide-l vjbration, ik iB ~nteresting to

aiaten that avoid thp constraint of (2,10),

SKLF-’rRAPl’1NG

A,, = ‘w)[l~,,+iq,) , ((,,1)

(/,,))



where

UJ
o = Eo/ji (4.3)

is the classical oscillation frequency of an amide_I vibration. (From

here on we will assume h = 1 and ❑ easure ●nergy and frequency in the

same units,)

Witl; a classical interaction energy

‘int
= X 2 qnlAn12

n
(4.4)

where qn is the coordinate of oome low frequency phonon with adiabatic

energy

H =; wIq:,
ph

n

one ●rrives ●l the tot-l classical Hamiltonian

H= ‘CO + ‘Iph + ‘int ‘

Minimizing (4,6) with renpect to th~ q,, requires

q,, ■ - $ lAn12

wh~r?upon (4.6) CaII he reduced 10

9

II H X IHOIAI,12- J(A;+,A,,*A:A,,+, ) ‘m; YIA,,141
n

(4,5)

(4.6)

(4,7)

(4,8)

(/,ty)
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The corresponding dynamical equation for An ie

(i~- EolAn + J(An+l+An.l) + YlAn12An = O . (4.10)

In addition to the ●ner~, ii, another constant of the motion along solu-

tions of (4.10) is the number

N= Z lAn12 .
n

(4,11)

To this point the discussion of th? present section has been

entirely classical. We now consider quantization in four special

cases: i) J << y, ii) y << J, (;ii) Bohr-Sommerfeld quantizat.ian, and

iv) The Davydov ansatz. In each case it will be of particular interest

to calculate an overtone neries corresponding to that presented in

‘Fable 2 for crystalline acetanilide.

The case J << ~

In this case we neglect the dipole-dipole interaction terms in (4.8)

and (4.10), and write the efiergy

H=~hn
n

where

h,, R~olA,,12- ~ yl/’/ ,

Under ~Ua~L~Zat~Oll, the termn ~n (4,12) become operators

(4, 1.!)

(4.1:1)

(4.14)



(4.15a,b)

Since the ordering

we take the averages

1AI2 + 36+6+66+)

of these operators is not determined by (4.13),

(4.16)

]Aj4 + ~(6+6+66 + 6+66+6 + 6+666+

+ 66+66+ + 666+6+ + 66+6+6) . (4.17)

where the subscripts have been dropped for typographical convenience.

Noting that 6+ and 6 gve the properLies 6+INZ = ~lN+l> and 61N> =

WIN-1> (where IN> is an harmo~ic oscillator eigen~tate), it is

straightforward to show that

fi= (EO-;Y)(4+6+6) - ;y6+66+6 .

Thus

filN> = E(N)IN>

where

E(N) = (Eo-;Y)(~+;)- ;yN2 ,

(4,18)

(4.19)

(4.20)

In ausmnary, eigenvrctors of the operators defined through (4.13),

(4.14), (4.]6) and (4,17) are identical to those of an harmonic

o~cillator, but thr corresponding ●i8envalues are given by (4,20).

Thr form of (4,20) is mignificrnnt, It can be written
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E(N) =Ec+EL+Em

c
where E is the ground state (N=O) energy, EL a N and

ENL .
- ;yN2

(4.21)

(4.22)

This “nonlinear” contribution ia directly ❑easured from the overtone

series in Table 2.

The case Y << J

In this case the classical equation (4.10) reduces to the nonlinear

Schrodinger (NLS) equation of soliton theory. To see how this goes,

assume the repeat distance between molecules is d and replace the

discrete variable n by a continu~us variable, x = n, which measure~

distance in units of d. Then (4.10) t~kes the form

2
(i ~ -Eo+2J)A+J~Q 8X2 + YIA12A =0. (4.23)

Quantization of this equation was originally performed using the

Bethe ansatz method and recently ~t has been shown that such solutions

can be ●fficiently constructed from a quantum version of inv-rae

scattering theory (Sklyanin and Faddeev ]978, Thacker and Wilkineon

1979).

Under quantization, the functions A and A* are leplaced by

t
●nnihilation and cr~ation operators for boson fields, $ and $ , At

equal times theme hav~ the commutation relations [$(x),!(Y)] =

[?+(XM+(Y)l = O and [?(x),@+(y)] = 6(x-Y). In terms of the previolla

diocuaaion, it is ●violent that $(x) in equivalent (under scaling) to
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bn in the continuous limit n = x. In effecting this limit two procedures

are customary: i) Neglect consideration of the ground etate energy which

is unbounded in the limit, and ii) “Normal order” all operator expres-

sions, i.e. cove all creation operators to the left.
A A

Since bbl = btb+l, normal ordering of (4.18) and neglect of the

ground state energy impiy

fin= (Eo-y)6:6n - ; y6:6:6n6n .

Thus to put (4.23) in standard form for quantum analysis, let

A= 0 exp[-i(Eo-2J-y)t]

and scale time as t + t/J. Then (4.23) becomes

i@t + @xx + ~l@120 = O

where a subscript notation is used for the partial derivatives.

quantization O + $ and (4.26) becomes the operator equation

i$t + $Xx +;$t$$=o

with energy operator

number operator

●nd momentum operator

P = -i Jdxt+$x ,

(4.24)

(4.25)

(4,26)

Under

(4,27)

(4,28)

(4.29)

(4.30)
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The quantum inverse

that diagonalize fi,

~1$> =NjIJ>

where

N= integer > 0 ,

PI*> =Npl@

where p is a real number,

scattering method provides exact wavefunctions,

P and 11 as follows (Wadati 1985).

(4.31)

(4.32)

(4.33)

and

$Ilp = [NP2+-$ (N-N3)]l@ .

Furthermore in the limit ~ 4 0 (Thacker and Wilkinson 1979)

1$> + ~dx eipxi$TIO> .

Equations (4.32) and (4.34) imply an overtone series

E(N) = EL+~NL

L
where E a N and

ENL = - >-N3 ,
48J2

(4.34)

(4.35)

(4,36)

(4,37)

In the parameter ronge y ~ J, no exact quantjzat~on procedure is

known to the present aut,iori It is, however, possible to impose

●lementary quantum conditions on stationary molutions of (4,10).

Writing such a solution in the form
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[1
* E

An= ~ an exp[-i(~ + UJ)tl (4,38)

reduces (4.10) to the standard form

IIKY +a +ci 3+a=O. (4.39)
n n+1 n-1 n

Using a shooting method (Scott and MacNeil 1983) it is possible to find

a family of numerical solutioris for (4.39) with the following proper-

ties: i) an = a-n, ii) Forn~O, ans aL1+l, and iii) Liman= O. From
n-

such a solution the conserved quantities H and N defined in (4.8) and

(4.11) are readily calculated as

N=~ *1a2 n
n

(4.40)

and

[1
Z ana,,-l

H(N) =Eo-Jn
Z a2

nn

N-;yN2

Z a4
n

n
2“

z cr2
n

n

(4.41)

l?ohr-Sommelfeld quantization is effected by noting that stationary

solutions are of the form

An(t) = Ano exp[i~(t)l where

6= dii(N)/dN .

Thus N and O are conjugate varinbl~s and the quantum condition

# Nde = 2n(integer)

(4,42)

(4.43)

together with the definition Of N (4.11) ~mply
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N= integer ~ O . (4.44)

Equation (4.41) has the form

E(N) =EL+EM

where

(4.45)

(4.46)

In the limit J << y, a << a ~ for Inl ~ 1 so (4.46) evidentlyn

reduces to (4.22). In the limit ‘~ << J it is straightforward to show

that (4.46) reduces to (4.371, Thus (4.46) is expected to provide an

NLaccurate calcu~.ation of E over the entire parameter range and is

sketched in Fig. 4.

Figure 4 here (for legend see p. 26)

It is nnw possible to consider how data from the overtone series

for the 1650 cm
-1

band in acetanilide compares with these calculations.

From (3.2) and (3.10)

Y.
—=11,3,
J

Figure 4 shows that this lies in the range for which

(4,A7)

E(N) -- EON - ; yN2 (4.48)



so the line at 1650 cm
-1 implies

E. = 1672.3 CD? . (4.49)

From the measured values of overtone frequency, v(N) in Table 2, the

nonlinear contributions to the overtcne spectmm can be calculated ns

~NL
J = v(N) - NE. . (4.50)

In Table 3 we compare these calculations with those computed from (4.48).

Table 3. Hoclinear Terms in ACR Overtone Series—— ——

y
-FNL
—. -; Y~2

— .—

1 22 cm-l
-1

22 cm
2 95 89
3 213 201
4 378 357

The measured values of E
NJ. art= indicated on Fig. 4.

Davydov’s anaatz

We are now in a position to evaluate Davydov’s analysis. In the

context of an adiabatic approximation, the wavefunction introduced in

(2.6) takes the form

(4.51)

where the an(t) are solutionh of (2.13). This form of the Dawdov

ansatz has thr following properties.

i) In the limit J ~< y, it reduces to the first ●igenfunction,

11>, in (4.19).

ii) In the limit y << J, it reduces to the asymptotic form of

Bethe’s ansatz in (4.35).
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iii) Between these two limits, L)avydov’s ansatz gives energies

that agree with Bohr-Sommerfeld calculations.

Thus one concludes that Davydov’~ ansatz is a useful approximation
●

to the exact wavefunction over the entire parameter range O < y/J C @,-

with the constraint (2.10) which implies N = 1.

BIOLOGICAL SIGNIFICANCE OF SELF-TRAPPING

Measurements on crystalline acetanilide (ACN) confirm Davydov’s

theory of self-trapped sta~es (solitons) in hydrogen bonded polypeptide

chains, Furthermore, Table 2 shows that the “N = 2“ st&te in ACN can

absorb almost all (95%) of the free energy released in hydrolysis of

adenosine triphosphate (ATP). It is reasonable to suppose that a

corresponding state can form on the hydrogen bonded polypeptide chains

of alpha-helix (see Fig. 1).

Over J decade ago McClare (1972a,b) argued that the free energy

released in ATP hydrolysis should transfer r[:sollantly into a protein in

order to avoid thermal degradation. To store and transport this energy

he posited an “excimer “ ~tate in protein which would be closely related

to the amide-A band of alpha-helix at 3240 cm‘1 (tlcClare 1974).

McClare’s excimer is qualitatively similar to the “conformon” of Green

and Ji (1972) and the basic properties of both are provided by a Davydov

soliton in the “N = 2“ state (Davydov 1973, 197~, 1977, 1979b & 1982a).

In the past such sl.~gestions have been rejected or ignored by the bio-

chemical community because a localized region of free energv within a

protein was believed to be physically impossible. Since thi~ view is no

longer tenable, the early proposals of Davydov, McClare, and Green and Ji

must be reevaluated. A recent paper by Careri and Wyman (1984)

suggesting a soliton mechanism for cyclic enzyme activity provides a

first s~ep in thiu direction.
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Tatll@ 2 Ovortono Sorioa fcr tha ACN Soliton.—.—A ~. —....—.= .=.——



Tabl? 3. Nonlinear T4rmm in ACN Overtone Series..—
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